Afterbody aerodynamic optimization design of transport airplane considering wing wake flow

The aerodynamic optimization design of typical transport afterbody considering the influence of the wing wake flow is studied.An optimization framework is established for the aircraft configuration and used for afterbody optimization at crui-sing status.The objective of this framework is to optimize the afterbody considering the influence from other parts of aircraft and the engineering constraints simultaneously.The spatial property of the afterbody in spatial control frame is established by implementing the free form deformation (FFD)approach.The NURBS spline is chosen as the basis function,which can represent the property of spatial control element and is suitable for afterbody geometry.Infinite interpolation deforming grid technique is adopted to update spatial grid with high efficiency and mesh quality.The modified Kriging surrogate model and quantum particle swarm algorithm are included in the optimization system to increase efficiency and ability to find global op-timal solution.In order to reduce drag at cruising status,upswept angle and cross section shape are optimized as the main afterbody configuration parameters.The result of the case shows that the aerodynamic performance of the transport’s body is improved after the optimization.